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Chapter 10 

Phase equilibrium 

It is a familiar fact that pure substances tend to exist in one of three distinct states: solid, 

liquid, and gas.  Take water, for example.  As ice is heated at atmospheric pressure, it 

suddenly melts into liquid at a specific temperature.  As the liquid continues to be heated, it 

eventually reaches a temperature at which it spontaneously vaporizes into a gas.  These 

transitions are discontinuous, i.e., they occur at specific state conditions—particular 

combinations of   and  .  At exactly those conditions, the system can exist in more than one 

form such that two (or more) phases are in equilibrium with each other.   

 Although we are typically familiar with phase behavior at atmospheric pressure, 

most substances experience a diverse set of phases over a broad range of pressures. Pure 

substances often have more than one crystal phase, depending on the pressure.  Figure 

10.1 shows a schematic of a  -  phase diagram of water that illustrates the kind of complex 

phase behavior that can exist.  In the case of mixtures, there are even more possibilities for 

phase equilibrium: for example, one can have equilibrium between two liquids of different 

compositions, or among multiple solid and liquid phases.  

 

Figure 10.1. A schematic of the phase diagram of water.  At greatly elevated pressures, several 

crystallographically distinct ice phases are seen beyond the usual ice Ih formed at ambient 

pressure. 

In this chapter, we will address the two most important questions in the discussion of 

phases.  First, what are the thermodynamic conditions for phase equilibrium?  Second, why 
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do phases change discontinuously?  For example, why does water have a definite boiling 

point temperature at ambient pressure?  We will use both classical thermodynamics and 

statistical mechanics to answer these questions. 

10.1 Conditions for phase equilibrium 

We must start by giving a precise definition to the meaning of “phase”: 

A phase is homogeneous region of matter in which there is no spatial 

variation in average density, energy, composition, or other macroscopic 

properties.   

Phases can also be distinct in their molecular structure.  For example, water 

has multiple ice phases that differ in their crystallographic structure. 

A phase can be considered a distinct “system” with boundaries that are 

interfaces with container walls or other phases. 

The notion of phase equilibrium means that there are two or more phase “systems” 

present.  These systems exist spontaneously on their own without the use of partitions or 

membranes or other interventions, and since they are in mutual equilibrium, they can 

exchange energy, volume, and particles.  We have seen in Chapter 4 that when such is the 

case, the conditions of equilibrium are given by maximization of the entropy subject to the 

constraints of constant total energy, volume, and particles.  For two phases involving a 

single-component, this becomes, 

   [  (        )    (        )] (10.1) 

At a maximum, we have, 
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where we used the fundamental entropy equation.  Because          ,          , 

and           by the constancy of the total energy, volume, and number of particles, 

this becomes, 
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Recognizing that    ,    , and     can all vary independently, the conditions for 

equilibrium between two phases must then be given by, 

                               (10.4) 
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 It will be helpful to take the following viewpoint: imagine that we can manipulate 

each phase independently by changing temperature, pressure, and chemical potential while 

retaining the same phase identity (e.g., liquid or vapor).  As an example, consider liquid 

water and ice phases, each which might be varied in temperature and pressure.  To find the 

conditions of solid-liquid equilibrium, we must search (   ) space for states satisfying the 

equalities in (10.4).  The points along which these are satisfied then correspond to the 

melting line.  If the equalities are not met, then only one phase will exist at those state 

conditions.   

 In fact, one of the equalities in (10.4) is redundant.  Recall that only two intensive 

variables are required to completely specify the thermodynamic state and hence all 

intensive properties of a single-component system.  Therefore, if we choose   and   then   

for either phase is uniquely specified, and generally we can write    (   ).  So if we are 

looking for   and   combinations that enable equilibrium between liquid water and ice, we 

can simply solve the following equation, 

  (   )    (   ) (10.5) 

where the numbers indicate each phase.  Notice that we have already accounted for the 

thermal and mechanical equilibrium conditions by assuming the temperatures and 

pressures are constant.  This equality of chemical potentials constitutes an equation with 

two unknown,   and  .  If we specify the temperature, we can solve for the pressure 

corresponding to phase equilibrium, and vice versa.   

 Eqn. (10.5) indicates that only one intensive variable is needed to specify the state of 

the system when two phases are in equilibrium, in a single-component system.  If   is 

specified, then   can be found by solving the chemical potential equality, and vice versa.  

This reduction in the number of independent degrees of freedom occurs because the mere 

fact that two phases coexist provides a constraint on the chemical potentials.  Fig. 10.2 

illustrates the procedure graphically, with the chemical potential in arbitrary units. 

 

Figure 10.2.  Schematic of the temperature-dependence of the chemical potentials of liquid water 

and ice at ambient pressure.  At 273 K, the chemical potentials are equal and phase equilibrium 

occurs.  Above (below) that temperature, liquid water (ice) has the lower chemical potential and is 

the thermodynamically stable phase. 
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From Fig. 10.2, we can see that there is only one temperature at which the chemical 

potentials of the liquid and crystal are equal.  That is the temperature of phase equilibrium 

at this pressure, here the melting temperature   .  Below   , the crystal has a lower 

chemical potential.  Because the thermodynamic potential minimized at constant   and   is 

the Gibbs free energy  , and since      for a single component system, the crystal is 

therefore the only phase present at     .  Under those conditions, it is the most stable 

state of the system at equilibrium, as any liquid would increase the free energy.  Similarly 

for     , the liquid is the only phase present. 

 

Fig. 10.3. Schematic of the temperature and pressure dependencies  of the chemical potential of ice 

and liquid water.  The intersection of the two surfaces defines a melting line when projected onto 

the  -  plane (the floor of this graph). 

If we consider variations in both temperature and pressure, then we must consider the 

chemical potentials in a three-dimensional space, as illustrated in Fig. 10.3.  The 

intersection of the two chemical potential surfaces then defines a line in the  -  plane 

along which phase equilibrium can occur.  This line is the melting line, and we can express 

it as either   ( ) or   ( ). 

 What if three phases are in equilibrium, in a single component system? In that case, 

two equalities of chemical potentials must be satisfied,       and       (the equation 

      is clearly redundant).  This amounts to two equations and two unknowns,   and  .  

Since there are no free variables, the temperature and pressure must be exactly specified in 

discrete solutions.  This is why the triple point of a material—at which solid, liquid, and gas 

phases all coexist—is a point in the  -  plane, and not a line. 

 These simple examples illustrate some basic features of phase equilibrium: 

At constant   and   in a single-component system, the phase that is observed 

is the one that has the lowest Gibbs free energy per particle, or equivalently, 

the lowest chemical potential  (   ).  At conditions where the chemical 

potentials of two or more phases are equal and at a minimum with respect to 

all other phases, the former can coexist in equilibrium with each other. 
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Of course, we can generalize these ideas in a mathematical framework that describes any 

kind of phase equilibrium, for arbitrary multicomponent systems.  Consider the case in 

which there are        phases and   components.  There are   chemical potentials in each 

phase that depend not only on   and  , but on all of the compositions of their respective 

phases as well, { }  (          ) where   denotes mole fraction.  Note that only     

mole fractions are independent in each phase since they must always sum to unity.  The 

conditions for equilibrium can then be cast as, 

 component    phase  (    { }phase  )   component    phase    (    { }phase    ) 

                    and            phase    
(10.6) 

There are  (        ) total such equations and         (   ) independent variables 

from    , and the     independent mole fractions in each phase.  The number of degrees 

of freedom in this problem,     , is given by the total number of variables minus the 

number of chemical potential constraint equations, 

        phase(   )   ( phase   ) 

    phase    
(10.7) 

This is the famous phase rule, originally derived by Gibbs.  Though we derived it on 

mathematical grounds, its physical interpretation is: 

Gibbs’ phase rule asserts that the state conditions giving rise to equilibrium 

among         in a  -component system are exactly characterized by      

macroscopic, intensive degrees of freedom, where                .  That 

is, only      pieces of information are required to uniquely specify the state 

of the entire system, knowing that         are present.  These pieces of 

information are typically drawn from    , and the phase compositions.   

Consider the space of the variables  ,  , and the set of compositions.  Let us imagine the 

ways in which different values of      are manifested in this space.  In the case       , 

there are no free variables and phase equilibrium corresponds to single, discrete sets of 

state conditions.  These are points in the  -  diagram for single-component systems.  For 

      , state variables can move in concert with one another along one direction in state 

space, such as a line in the single-component  -  diagram.  Finally with       , there is 

flexibility to move in two independent directions in the parameter space.  For a single-

component system, this corresponds to an area in the  -  plane. 

 The phase rule just described applies to non-reactive systems.  If a set of 

components can interconvert by way of a reversible chemical reaction that also reaches 

equilibrium, then the phase rule is modified: 

        phase     reaction (10.8) 
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where           is the number of such equilibrium reactions.  It might be easy to see why 

there is a reduction in the degrees of freedom: for each reaction, there is an additional 

constraint equation that relates the concentrations of different components to an 

equilibrium constant.  More technically, chemical reactions add additional chemical 

potential equalities, as discussed later in Chapter 20. 

10.2 Implications for phase diagrams 

 

Figure 10.4.  Schematics of typical phase diagrams for simple, single-component systems (e.g., 

argon).  In the  -  diagram to the left, single phases appear as areas, while phase equilibrium 

occurs along lines and at points.  In the  -  diagram to the right, both single phases and two-phase 

equilibria appear as areas.  In two-phase conditions, the density   corresponds to the overall 

system density, that is, the total moles divided by the total volume of both phases.  At a given 

temperature, therefore, a horizontal line intersecting the boundaries surrounding a two-phase 

region gives the individual densities of the coexisting phases.  

A common way to depict the conditions giving rise to phase equilibrium is through a phase 

diagram.  Indeed there are many kinds of phase diagrams, but two examples typical for a 

single-component system are shown in Figure 10.4.  In the  -  diagram, lines correspond 

to regions with two phase-equilibrium.  It is easy to see that        along these lines, 

since the indication of temperature automatically specifies the pressure, and vice versa.  On 

the other hand,        corresponds to a point, such as the triple point.   

 An alternative representation of the same behavior is shown in the  -  diagram in 

Fig. 10.4.  This depiction differs in an important respect: two-phase regions correspond to 

areas rather than lines because the density changes discontinuously as one moves from one 

phase to another.  For example, if a liquid is heated at constant pressure, it will eventually 

begin to vaporize at the boiling temperature.  For a small amount of heat added, the system 

consists of a minuscule amount of gas at low density and a large amount of liquid at high 

density, for an overall system density that remains close to that of the liquid.  However, as 

more heat is added, the moles in the gas phase increase at the expense of those in the 

liquid; while the individual densities of these phases remains the same, the overall density 

is thus shifted towards that of the gas.  It is this overall density that is represented on the  -
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axis of  -  diagrams within the two-phase areas, while the boundary lines give the 

densities of the individual phases. 

 The slopes of boundaries in phase diagrams are tightly connected to 

thermodynamic properties.  Consider the liquid-gas boundary in the  -  diagram.  Along 

this line the chemical potentials of both phases must be equal; otherwise, two-phase 

equilibrium would not be possible.  Therefore, if we move a short distance along the liquid-

gas boundary, the chemical potentials of the liquid and gas must change by exactly the 

same amount since they must continue to be equal at the ending point.  In the limit of an 

infinitely small change, 

   (   )     (   )       (along phase boundary  (10.9) 

Taking the full differential of   and recognizing that     for a single component, 

                            (along phase boundary  (10.10) 

Rearranging and completing the derivative, 

(
  

  
)
phase boundary

 
     
     

 
  

  
 (10.11) 

Eqn. (10.11) asserts that the slope of the liquid-gas boundary in the  -  phase diagram is 

related to the molar entropy and volume differences of the two phases.  Actually, this 

equation is valid for any phase boundary because 
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The reader is encouraged to perform the full derivation of Eqn. (10.13) themselves.  Finally, 

in cases where the enthalpy difference does not vary significantly with temperature, we can 

treat    as constant and integrate to obtain, 
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) (10.14) 

where (     ) and (     ) are two points on the liquid-gas phase boundary.  If we treat    

and    as reference “constants,” this equation could also be written in the form that gives 

the saturation pressure at any temperature, 

      ( )     
  
 

 (10.15) 

where             ⁄       and           ⁄  are treated as constants.  The form of 

this equation is remarkably similar to empirically-fitted correlations used to predict the 

saturation pressure, such as the Antoine equation, 

      ( )     
  

    
 (10.16) 

The additional constant   , relative to (10.15), compensates for the assumption of a 

constant enthalpy of vaporization.  Eqn. (10.16) is widely-used in practice and values for 

       and    for a large number of liquids are available in many reference texts and 

publications. 

 For equilibrium between solids and gases—sublimation—we can also use the 

Clausius-Clapeyron equation because the gas volume remains much greater than that of the 

crystal.  However, for solid-liquid or solid-solid equilibrium, one must return to the original 

Clapeyron equation since this assumption becomes poor.     

EXAMPLE 10.1 

A pressure cooker is able to cook food rapidly by enabling water to remain in a liquid state at hotter 

temperatures than possible at atmospheric conditions.  Calculate the boiling temperature of water in a 

pressure cooker rated at 15 psi above atmospheric pressure.  The enthalpy of vaporization of water at 

ambient conditions is               . 

To address this problem, we use the integrated Clausius-Clapeyron equation of (10.14): 
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)] 

Solving for   , 
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10.3 Other thermodynamic behaviors at a phase transition 

 

Figure 10.5. Extensive properties—and per mole or per mass versions thereof—change 

discontinuously at the liquid-vapor phase transition.  Illustrated here is the behavior of the volume, 

internal energy, and entropy for water under atmospheric pressure. 

At a phase transition, the second law demands that the chemical potentials, temperatures, 

and pressures of the phases present are equal, but what about differences in other 

properties such as the entropy, energy, and volume?  In general, these variables change 

discontinuously across a phase transition.  Figure 10.5 illustrates this behavior for the 

liquid-vapor transition in water at atmospheric pressure.  Clearly at        , there are 

discontinuous changes in the volume, entropy, and energy.  In other words,               

can take on nonzero values that are characteristic of the boiling point.   

 Similarly, the change in enthalpy,          , is also discontinuous.  This is a 

particularly important quantity because the first law at constant pressure gives     , 

which implies that heat added to a system at phase equilibrium is directly related to the 

system enthalpy change.  We typically term the quantity    the latent heat or latent 

enthalpy of a given phase transition; in the water example, it is the latent heat of 

vaporization.   

 How then does the intensive heat capacity,    (     ) , behave at a phase 

transition?  If the enthalpy changes discontinuously at the boiling point, then    diverges.  

The heat and hence enthalpy added to the system at the boiling temperature converts 

liquid into vapor, rather than increases the system temperature.  In other words, the 

enthalpy of vaporization is absorbed with zero change in temperature, which suggests the 

lack of a well-defined heat capacity. 
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the expense of the liquid, at constant temperature.  This is in contrast with the pure liquid and gas 

phases, in which the temperature rises with increases in enthalpy.  

Figure 10.6 illustrates the relationship of system to individual phase properties using water 

and its enthalpy as an example.  For a constant pressure process, the first law      

shows that heating water below its boiling point increases its enthalpy and raises the liquid 

temperature until it reaches      .  At that point, the system is pure liquid water with an 

infinitesimally small amount of vapor.  As heat is further added, the temperature remains 

constant but the amount of vapor grows until eventually the entire system consists of 

vapor and an infinitesimally small amount of liquid.  As might be obvious, this occurs when 

heat in the amount of the enthalpy of vaporization is added.  During vaporization, all of the 

properties of the liquid and gas phases remain constant: their densities, molar energies and 

entropies, etc.  Finally, after the last drop of liquid has vanished, additional heat raises the 

temperature and increases the enthalpy of the homogeneous gas phase. 

 

EXAMPLE 10.2 

A small microwave adds heat to a glass of water at the rate of 500 W.  Assume that the rate of heating 

is slow enough that the water can maintain a near-equilibrium state.  If the water is initially at 20 C 

(room temperature), how will it take the liquid to completely boil off? 

Assuming constant atmospheric pressure for the process, we have for the water, 

                

                                     

The work is nonzero because the water will expand against the pressure of the atmosphere as it is 

heated and changed into a gas.  Thus, the heat added from the microwave increases the water’s 

enthalpy.  Because enthalpy is a state function, we can calculate the total change in   between the 

liquid and gas using a cycle by which we heat the liquid and then boil it. The total enthalpy is 

calculated as follows, assuming constant heat capacity for the liquid, 

      (     )          

  (                             )   (           ) 

For a typical glass of water,         .  Thus, 

  
  

 ̇
 
(      )(           )

       
               

10.4 Types of phase equilibrium 

The considerations above show that a phase change often involves a discontinuity in 

enthalpy and volume.  There are, however, special phase transitions where the changes in 

enthalpy and volume are exactly zero.  These are often called second order phase 
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transitions, an old nomenclature originated by Paul Ehrenfest.  In this classification scheme, 

phase transitions are characterized by the free energy derivatives that change 

discontinuously.  Consider the chemical potential in a single component system, for which 

   .  First order phase transitions occur when discontinuities arise in its first derivatives, 

                       These are the most common phase transitions, and are 

generally of the familiar type, such as melting, boiling, sublimation, liquid-liquid separation, 

etc.  On the other hand, second order phase transitions have first derivatives (   ) that 

remain continuous, but entail discontinuities in the second derivatives,       ⁄  

     ⁄      ⁄            ⁄      ⁄            
      ⁄      ⁄     .  In other 

words, second order phase transitions involve discontinuities in the response functions 

       and   . 

 The Ehrenfest scheme is generally useful for describing a large range of different 

kinds of phase transitions.  However, the modern notion of a phase transition’s “order” has 

taken on more subtle definitions.  Generally in the modern context, a first order transition 

is one that involves a nonzero latent heat   .  Second order transitions, on the other hand, 

are characterized by the behavior of molecular-scale correlations and how they scale as 

one approaches the transition.  Such analyses are the province of modern research in 

statistical mechanics, and are thus beyond the scope of this book.  However, it is useful to 

recognize that such transitions indeed exist, occurring in magnetic materials, superfluids, 

and liquid crystals, for example.  In addition, the liquid-gas transition at the critical point 

becomes second order where differences between the gas and liquid vanish and it becomes 

possible to continuously change between them, with no discontinuities. 

10.5 Microscopic view of phase equilibrium 

So far, we have said nothing about why phase transitions exist.  After all, a system of 

molecules doesn’t know that it needs to change abruptly to a gas at a well-defined boiling 

temperature.  The system instead knows only the fundamental atomic interactions 

governing the time evolution of its constituent molecules.  Therefore, the observation that a 

system can spontaneously phase separate into two distinct regions is a consequence of the 

nature of molecular interactions, not a separate feature of the molecular world.  Phase 

transitions, it turns out, emerge in the limit of very large systems of molecules. 
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Figure 10.7. Schematic of the lattice gas model in two dimensions.  Molecules cannot overlap and 

those that are nearest neighbors experience an attractive interaction in the amount of –  .  A central 

molecule has four (six) nearest neighbors in 2D (3D). 

To illustrate this point, it helps to examine a model of molecular interactions.  One of the 

simplest we can study is the so-called lattice gas model, a very basic approach to the liquid-

gas transition.  The model postulates that the volume available to molecules is subdivided 

into small cells that form, for instance, a cubic lattice.  Each cell is the size of a single 

molecule, and can either contain one or not.  When two molecules sit adjacent to each other 

in neighboring cells, they experience an attractive potential energy in the amount of –  .  

The approach is illustrated in two dimensions in Figure 10.7. 

 Though it does not describe the atomic world in quantitative detail, the lattice gas 

captures the two most important features of all liquids and gases.  First, molecules 

experience an attractive interaction upon close approach, typically due to van der Waals 

forces, which are present in every molecular system.  Second, molecules have some space in 

which to move around depending on the density of the system, here in terms of the number 

of molecules per the number of lattice sites.  Although this model seems very crude, these 

features capture the main physical driving forces behind the liquid-gas transition.  In fact, 

near the critical point, a huge range of substances behave exactly like the lattice gas.  This 

surprising result is called universality, and it was discovered and developed in the 1960s 

and 1970s. 

 Moreover, the lattice gas model is useful for describing other phase transitions.  In 

particular, if instead of particles in the lattice one considers magnetic spins, the model 

reproduces the ferromagnetic behavior of materials like iron.  In fact, the model was 

originally introduced for this purpose in 1925 by Ernst Ising in his Ph.D. thesis, and hence 

is often called the Ising model.   

 To understand the origins of liquid-vapor phase behavior, we must develop the 

thermodynamic properties of this model by determining a thermodynamic potential that is 

a function of its natural variables, like  (     )  (     )      (     ).  For one and two 

dimensions, the lattice gas is exactly solvable.  The one dimensional case is fairly easy to 

derive and can be found in standard statistical mechanical texts.  The two dimensional case 

is far more complicated.  It wasn’t until 1944 that Lars  nsager, a chemical engineer-

turned-chemist at Yale, determined the mathematical solution to the 2D Ising model that 

later won him the Nobel Prize.  For three dimensions, it is quite possible that there are no 

analytical solutions.   

 Rather than seek an exact solution, here we will find an approximate one that has 

the same basic features as the true one.  We will compute the Helmholtz free energy using 

the equation, 

       (10.19) 
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First, we find the average energy we expect for putting   lattice gas molecules randomly in 

a volume  .  The random part is an approximation, since attractive interactions certainly 

could coax molecules into very non-random, clustered configurations. On the lattice, each 

molecule has   neighbors, where     in three dimensions.  If we focus on one molecule, 

we can approximate the number of neighbors that it has, on average, by assuming the 

density among the neighbors is the same as the bulk density.  Thus the average number of 

neighbors to a molecule is   (   ).  The total energy contributed by that molecule is, 

 molecule   
 

 
( 
 

 
)   (10.20) 

The half stems from the fact that each pair interaction must be shared between two 

molecules, with      given to the central one and      to the neighbor.  This particular 

simplification is called the mean-field approximation because we have assumed an average 

density and energy field surrounding each molecule, rather than performed a detailed 

enumeration of specific configurations.  The mean-field approach is an extremely common 

way of evaluating statistical mechanical models because it obviates the need to consider 

configurations explicitly.  Finally, the total system energy is   times that of (10.20), 

    molecule 

  
  

 
(
  

 
)   

  

 
    

(10.21) 

where the number density is      .  The next task is to compute the entropy term of 

(10.19) by counting configurations.  We have no need to consider energies because the 

mean field approximation assumes that all configurations have the same energy, that of 

(10.21).  Thus, for   lattice sites and   molecules, the number of ways to arrange them is, 

  
  

  (   ) 
 (10.22) 

Taking the logarithm and applying Stirling’s approximation, we obtain, 

            [     (   )   (   )] (10.23) 

Putting both Eqns. (10.21) and (10.23) both parts together allows us to determine the free 

energy per particle, 

 

 
  

  

 
      

  [     (   )   (   )] (10.24) 

 To understand the behavior of this model as a function of temperature and pressure, 

we construct the per-particle Gibbs free energy,  (   )   (     )  .  This is given by 

the Legendre transform, 
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 (   )  
 

 
 
  

 
 

  
  

 
      

  [     (   )   (   )]       

(10.25) 

Recall that the Gibbs free energy is at a minimum at equilibrium, for constant   and   

conditions.  Therefore, the equilibrium density for a particular   and   is given by the value 

of   that minimizes this expression.  This is equivalent to the statement that we find a value 

of   that minimizes  (   ) per the recipe for a Legendre transform. 

 

Figure 10.8. Behavior of the per-particle Gibbs free energy of the lattice gas model, for different 

temperatures at constant pressure.  Two minima appear with respect to density: at low 

temperatures, the global minimum corresponds to liquid-like densities, while at high temperatures, 

it occurs at gas-like ones.  Each curve is shifted vertically by an arbitrary amount for clarity. 

 The density-dependence of Eqn. (10.25) at constant pressure and for three 

dimensions (   ) is illustrated in Fig. 10.7.  It is clear that there are two local minima in 

the free energy with respect to density, but their behavior is highly temperature-

dependent.  At low  , the minimum at higher densities is lowest, implying that it is the 

dominant, minimum free energy at equilibrium.  This is the liquid.  In contrast at high  , a 

low-density minimum is the globally extremum; this is the gas.  At a particular intermediate 

temperature, the depth of the two minima are equal and the system can experience both 

states at equilibrium.  This special state is the boiling temperature,    . 

 These considerations explain why a liquid changes discontinuously into a gas when 

heated at constant pressure: the gas state suddenly becomes the global free energy 

minimum.  Why are there two distinct minima in the free energy curve?  Qualitatively, it is 

because distinct physical interactions dominate the behavior of each state.  Liquids 

experience favorable energetic interactions because molecules are in close contact, and van 

der Waals forces contribute attractive (negative) energies. Gases have large entropies since 

they afford molecules a large volume in which to roam. As the liquid is heated, the drive to 

gain entropy overwhelms the favorable energetic interactions.  Consider that the Gibbs free 
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energy,       , shows that as   increases the entropic eventually term becomes more 

important than the enthalpic one. 

 

Figure 10.9.  The free energy curves for several representative state points in the  -  and  -  phase 

diagrams of the top two panels are illustrated in the bottom ones.  At coexistence, the liquid and gas 

minima have equal depth, but the barrier between them shrinks and eventually disappears as one 

approaches the critical point (c.p.).  Above this point, the system is a supercritical fluid, with no 

distinction between liquid and gas. 

 Of course, the free energy curves and hence boiling temperature in Fig. 10.8 would 

change with pressure.  In general, if we were to examine these curves across the entire  -  

phase diagram, we would see bahavior reminiscent of Fig. 10.9.  Notice that the locus of 

points for which the two minima have equal depth forms a line in the  -  diagram.  This 

boundary could be called the boiling line, the saturation curve, or the liquid-vapor 

equilibrium line.  As one moves from low to high temperatures along this boundary, the 

barrier between the two minima decreases.  Eventually at the critical point, the barrier 

disappears altogether.  Above    and   , there is only one minimum in the free energy, 

corresponding to a supercritical fluid, and there is no longer a distinction between liquid 

and gas. 

 Why is there a free energy barrier that separates the two minima in the free energy 

function?  Physically, the barrier is related to the penalty paid for the existence of a surface 

that separates the two phases present.  It is therefore an unfavorable increase in free 

energy due to a surface tension relevant to intermediate densities that lie between the 

liquid and gas.  At coexistence, the two phases attempt to minimize the surface area to 

minimize the free energy.   

For a single-component liquid-gas transition, there are two minima in the 

Gibbs free energy as a function of density.  The stable phase corresponds to 

the lowest-lying minimum at a given   and  .  The boiling or saturation line 
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corresponds to the locus of (   ) points along which the two minima are of 

equal depth, separated by a free energy barrier.  The critical point is the 

temperature and pressure at which the barrier vanishes, above which there 

is only one free energy minimum for the supercritical fluid. 

It is relatively easy to compute the coexistence densities from the model.  One approach is 

to simply tune   (or  ) at fixed   (or  ) until the minima predicted by Eqn. (10.25) are of 

equal dept.  Frequently, however, we do not have direct access to this function, but rather 

some simpler experimentally-fit model like the equation of state.  In the lattice gas, the 

latter is given by, 

   (
  

  
)
   

 

   (
  

  
)(
 (   )

  
)    (

 (   )

  
) 

  
  

 
        (   ) 

(10.26) 

 

 

Figure 10.10.  The equation of state ( (   )) shows a van der Waals type loop with molar volume 

at fixed pressure, indicating the presence of liquid-vapor equilibrium. The equal area construction 

is used to determine the coexistence pressure and molar volumes (and hence densities) at this 

temperature.  

One can determine whether or not an equation of state predicts coexistence by examining 

its dependence on molar volume,     ⁄ , at constant temperature. Figure 10.10 

illustrates this behavior in the lattice gas.  We see that the pressure displays a kind of non-

monotonic behavior, which is actually an artifact of the mean-field approximation.  In 

reality, the pressure should display a flat line at the densities in the coexistence region, i.e., 

in between the liquid and gas volumes    and   .  Such a behavior would correspond to the 

discontinuous change in molar volume as the pressure crossed the melting line at a given 
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temperature.  This would have been the behavior if we had performed an exact evaluation 

of the model in the large-system limit rather than employed the mean-field approximation.   

 The non-monotonic behavior of the kind in Fig. 10.10 is termed a van der Waals 

loop, and it is frequently encountered in approximate or empirical equations of state.  To 

find the coexistence pressure and densities, one uses the equal area construction as 

illustrated.  We shall now derive this rule.  The chemical potentials of the liquid and gas 

must be equal at coexistence,      ; therefore, the chemical potential difference as we 

integrate across molar volume at constant temperature from gas to liquid must be zero, 

    .  Recalling that (     )    for a single-component system, we can write, 

     ∫    
  

 L

 (10.27) 

Using the chain rule,  (  )         , 

   (  )  ∫    
  

 L

 (10.28) 

Since the integration limits are at the same, coexistence pressure, we finally have, 

 coexist(     )  ∫    
  

 L

 (10.29) 

Eqn. (10.29) is simply another way of saying that the shaded areas in Fig. 10.10 must be 

equal:  the total area under the curve should be equal to the area of the box formed 

between the  -axis endpoints    and   , and between   and          on the  -axis.  This can 

only happen if the shaded areas exactly balance. 

 The critical temperature occurs when the pressure no longer exhibits the non-

monotonic behavior shown in Fig. 10.10.  At this state, the minimum and maximum in the 

pressure converge to the same point as an inflection point.  Thus, at the critical point,  

(
  

  
)
 

       and    (
   

   
)
 

   (10.30) 

Substituting Eqn. (10.26), 

     
   

   
       and        

   

(   ) 
   (10.31) 

These two equations can be solved simultaneously for   and  , giving for the critical 

density and temperature, 

   
 

 
     and        

 

 

  

  
  (10.32) 

These results can then be back-substituted in (10.26) to find the critical pressure, 
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     (
   

 
 
 

 
) (10.33) 

In three dimensions     and the critical temperature is           .  The mean-field 

approximation actually overestimates the true critical parameters here; for example, 

detailed computer simulations have established the critical temperature to exist near 

           . 

10.6 Order parameters and general features of phase equilibrium 

In the preceding section, we examined phase equilibrium in the liquid-vapor case using a 

Gibbs free energy function dependent on the density.  In general for any kind of phase 

equilibrium, one needs to consider the behavior of a free energy as a function of some order 

parameter that distinguishes between the  two phases.   For the liquid-vapor transition, a 

natural order parameter is the density.  However, this is not always the most useful metric 

to choose.  For example, in solid-liquid transitions, the density difference can be very small, 

or even zero, and thus we might need a rather order parameter, such as a crystalline lattice 

metric that quantifies the structural behavior of the molecules.  For multicomponent 

mixtures, often the compositions (e.g., mole fractions) are useful as order parameters since 

the mixture might phase-separate into regions enriched in various components. 

 Once one or more appropriate order parameters are identified, the procedure is to 

examine a free energy expressed as a function of them in addition to its natural variables.  

Then, the stable phase corresponds to the values of the order parameters that minimize the 

free energy.  If we were to find conditions for which more than one global minima exist, 

then these conditions correspond to phase equilibrium.  It is possible that more than two 

global minima may be present.  This occurs in a single component system at its triple point. 

In multicomponent systems, the possibilities for multiple minima increase, per Gibbs’ 

phase rule. For example, two immiscible liquid phases can be in equilibrium with a vapor 

phase; in this case, we would seek three global free energy minima in the multidimensional 

space of both density and composition. 
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Problems 

Conceptual and thought problems 

1. A liquid mixture of 1-propanol and 1-pentanol is prepared under standard conditions.  

Your lab mate suggests that you determine a mixture boiling point by heating the solution 

(at constant pressure) and then noting the temperature at which it completely changes 

from all liquid to all vapor.  What is wrong with your lab mate’s analysis?  Why? 

 

2. The change in molar enthalpy of a particular phase transition at a given     is zero.  For 

each of the following, indicate true, false, or there is not enough information to tell. 

a) The entropy of phase transition is also zero. 

b) A differential increase in   will always will convert the system completely to the phase 

of higher density, even if   changes differentially also. 

c) It is impossible for this system to be single-component. 

 

Fundamentals problems 

3. At atmospheric pressure, liquid water expands upon freezing.  Explain what this means 

for the ice-water phase boundary in the  -  plane. 

 

4. For any phase transition, prove that entropy of the stable phase at lower temperature 

must be less than that of the entropy of the phase at the higher temperature, along an 

isobar. 

 

5. Consider equilibrium between two phases in a single-component system.  Show that the 

change in chemical potential with pressure along the phase boundary is given by: 

(
  

  
)
              

 
 (   ̂)

 (  ⁄ )
 

where       and  ̂     .   

 

6. Consider equilibrium between two phases in a single-component system.  Show that the 

change in chemical potential with temperature along the phase boundary is given by: 

(
  

  
)
              

  
 (  )
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7. Originally, second-order phase transitions were defined as those for which the volumes 

and entropies did not change as one moved from one phase to another, i.e.,      and 

    .  Show that movements along the phase boundary for such transitions must obey 

the following so-called Ehrenfest relationships: 

(
  

  
)
              

 
   
   

 

(
  

  
)
              

 
   
     

 

 

8. A Mollier diagram gives fluid properties as a function of the molar entropy ( -axis) and 

molar enthalpy ( -axis).  In particular, it is highly useful in process calculations involving 

steam.  Various iso-lines in this kind of diagram trace out paths of constant pressure, 

temperature, and quality (the fraction of vapor versus liquid in the two-phase region).   

a) Find an expression for the slope of an isotherm in a Mollier diagram in terms of 

measurable quantities, in the single phase region.  Then, find an expression for the slope of 

an isobar. 

b) What is the functional relationship    ( ) for an ideal gas along an isobar, assuming a 

temperature-independent heat capacity?  Assume the absolute entropy    and enthalpy    

are known at some reference temperature   .  What is the relationship for an isotherm? 

c) Where might an isotherm be vertical, i.e., its slope infinite?  Name an example. 

 

9. If interfacial properties contribute to the bulk thermodynamic behavior of a system, the 

fundamental equation must be modified to include their effects.  Generally, one can write 

for a single-component single-phase system: 

                    

where   is the surface area of the system and   is the surface tension.  Note that   is 

defined by the change in Gibbs free energy with area at constant      .  Generally, the 

surface tension is positive, which drives systems towards the minimization of interfacial 

areas by way of minimizing the Gibbs free energy. 

a) Show that the entropy of the system is independent of its area if the surface tension is 

constant with temperature. 

b) If the area is extensive (e.g., scales linearly with  ), show that, (    ⁄ )       ⁄  
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10. Consider the system described in the previous problem to be a single-component 

spherical droplet of radius   in a vacuum, neglecting the possibility of evaporation.   

a) Write an expression for the differential Helmholtz free energy of the system.  Use this to 

find an expression relating the equilibrium value of   to the liquid pressure   and surface 

tension  , at constant temperature and mole number. 

b) Instead of existing in a vacuum, the droplet sits inside a vapor phase of the same 

component that is metastable with respect to the liquid (i.e., in the process of condensing 

into the droplet).  The droplet and vapor are in thermal and mechanical equilibrium, and 

are held at constant temperature and pressure.  For this system, the Gibbs free energy at 

constant     is given by: 

                     

where the superscripts   and   denote the liquid droplet and gas phases, respectively.  As 

liquid condenses into the droplet, show that the free energy change with droplet radius is 

given by, 

  

  
   (

    

 
      ) 

where          and   is the liquid molar volume (approximately constant). 

c) What are the signs of each of the two terms in the expression for      ?  Which term 

dominates at small and large  , respectively?  Sketch  ( ), the free energy as a function of 

droplet radius, setting  (   )   .  What is the size of the droplet at the free energy 

barrier?  This approach might be used to find a critical nucleus size and to determine the 

kinetics of nucleation. 

 

Applied problems 

11. The saturation pressure for vapor-liquid equilibria for a given species is fitted to the 

Antoine equation,   (        ⁄ )     (   )⁄  where            are material-specific 

constants.  Assume the vapor obeys the equation of state        (    ) where   is 

another constant that modifies the ideal gas expression to account for molecular volume. 

a) Write an expression for the enthalpy of vaporization as a function of temperature.   

b) For water,                                              , and        

           .  How does your estimate of      (       ) compare to the experimental 

value of            ?  What is the most likely source of error? 
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12. At high pressures, water can form a number of ice phases differing in crystallographic 

structure.  Using Figure 10.1, rank order liquid water and its ices from lowest to highest 

density, to the best of your ability.   

 

 

Figure 10.11.  Schematic illustration of the solid-liquid phase diagram of the isotope He3 [adapted 

from Stillinger, Debenedetti, and Truskett, J. Phys. Chem. B 109, 11809 (2001)]. 

13. A Kauzmann point is defined as a point in (   ) space where the entropy difference 

between two phases equals zero,     .  Figure 10.11 gives a schematic phase diagram of 

the isotope He3.   

a) Indicate any Kauzmann points on this diagram. 

b) In general for any substance, consider the locus of all points in the (   ) plane for which 

     between two phases.  This will form a line that extends into the metastable regions 

of the two phases.  What is the slope of this line, (    ⁄ )    , in measurable quantities?  

 

14. Proteins are biopolymers that can generally exist in two different states: an unfolded 

state consisting of many unstructured conformations (e.g., the protein “flops” around a lot  

and a folded state that is a highly-ordered and stable three-dimensional structure.  

Typically as one increases the temperature, a protein transitions from folded to unfolded.  

The quantity that determines which state will be dominant at any one temperature is the 

Gibbs free energy.   In this problem, assume that the heat capacities of each state,    folded 

and    unfolded, are constant. 

a) Show that the free energy of folding,                         , can be written as 

  fold           (  
 

  
)     [        (

 

  
)] 

where    is the folding temperature, i.e., the temperature at which the protein switches 

from folded to unfolded,           ( folded   unfolded)   is the enthalpy of folding at the 

folding temperature, and        folded     unfolded. 
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b) The numbers of folded and unfolded proteins in a given solution are proportional to 

   (          ⁄ ) and    (            ⁄ ), respectively.  Experiments can measure the 

fraction of proteins that are folded,  , as a function of temperature  .  If the heat capacities 

of the unfolded and folded states are roughly equivalent, how would you estimate           

from such data? 


